M1.(a) (i) Appreciates $p V$ should be constant for isothermal change (by working or statement) $W=p \Delta V$ is TO

Allow only products seen where are approximately 150 for 1 mark Penalise J as unit here

Demonstrates $p V=$ constant using 2 points (on the line) set equal to each other or conclusion made or shows that for V doubling that p halves (worth 2 marks) need to see values for p and V

Products should equal 150 to 2 sf Accept statement that products are slightly different so not quite isothermal

Demonstrates $p V=$ constant using 3 points (on the line) with conclusion
Need to see values for p and V
Products should equal 150 to 2 sf Accept statement that products are slightly different so not quite isothermal
(ii) Adiabatic therefore no heat transfer or Adiabatic therefore $Q=0$

Work is done by gas therefore W is negative or Work is done by gas therefore energy is removed from the system
ΔU is negative therefore internal energy of gas decreases or energy is removed from the system therefore internal energy of gas decreases or work done by the gas so internal energy decreases

Allow

$$
-\Delta U=-W \text { or } \Delta U=-W
$$

(iii) Uses $p V / T=$ constant or uses $p V=n R T$ or uses $p V=N k T$
e.g. makes T subject or substitutes into an equation with p_{A} and $V_{A} \circ{ }^{\circ} p_{C}$ and V_{C} (condone use of $\mathrm{n}=1$) or their $\frac{(p V)_{A}}{(p V)_{c}}$

$$
\begin{aligned}
& V_{a} \text { read off range } \\
& =2.5 \text { to } 2.6\left(\times 10^{-4}\right) \\
& p_{A}=600 \times 10^{3} \\
& V_{c} \text { read off range } \\
& =8.5 \text { to } 8.6\left(\times 10^{-4}\right) \\
& p_{C}=140 \times 10^{3}
\end{aligned}
$$

Correct substitution of coordinates (inside range) into $\frac{(p V)_{\mathrm{A}}}{(p V)_{c}}$
With consistent use of powers of 10
$(p V)_{A}$ range is 150 to 156 and $(p V)_{C}$ range is 119 to 120.4

C1
1.2(5) Allow range from 1.2 to 1.3

Accept decimal fraction : 1
(b) Energy per large square $=10(\mathrm{~J})$ or states that work done is equal to area under curve (between A and B)
or energy per small square $=0.4(\mathrm{~J})$
or square counting seen on correct area
Must be clear that area represents energy either by subject of formula or use of units on 10 or 0.4

Alternative:
W = area of a trapezium
(with working)

$$
\text { or } W=P_{\text {mean }} \times \Delta V \text { or }
$$

$$
W=450 \times 10^{3} \times 2.5 \times 10^{-4}
$$

or $W=$ area of a rectangle + area of a triangle (with working)

Number of large squares $=10.5$ to 11.5 seen and $(W)=$ number of squares \times area of one square (using numbers)
Range $=105$ to 115 (J)
Or
Number of small squares $=263$ to 287 seen and $(W)=$ number of squares \times area of one square (using numbers) Range $=105$ to 115 (J)

States that actual work done would be lower because of curvature of line
(c) (Total energy removed per s =) 4560 (J) or number of cycles per $s=40$
or (Mass per second =) $114 \div 68400$ in rearranged form
or their energy $\div(c \Delta T)$ or their energy $\div 68400$

C1

$0.067(\mathrm{~kg})$ seen Allow $0.066(\mathrm{~kg})$ here
or allow $\mathrm{V} / \mathrm{t}=1.67 \times 10^{-3} \div 1100$
$\operatorname{or}\left(\frac{V}{t}\right)=\frac{E}{\rho c \Delta \theta}$ and correct substitution seen
Condone $\mathrm{E}=114(\mathrm{~J})$ or temperature $=291(\mathrm{~K})$
C1
$=0.061 \times 10^{-3}$ or $6.06 \times 10^{-5}\left(\mathrm{~m}^{3}\right)$

M2.(a) (i) Clear statement that for isothermal $p V=$ constant or $p_{1} V_{1}=p_{2} V_{2} \checkmark$
Applies this to any 2 points on the curve AB e.g. $1.0 \times 10^{5} \times 1.2 \times 10^{-3}=4.8 \times 10^{5} \times 0.25 \times 10^{-3} 120=120$

Allow pV $=c$ applied to intermediate points estimated from graph e.g. $V=0.39 \times 10^{-3}, p=3 \times 10^{5}$
(ii) $W=p \Delta v$
$=4.8 \times 10^{5} \times(0.39-0.25) \times 10^{-3}$
$=67 \mathrm{~J}$ ノ
(b)

	Q / J	W / J	$\Delta U / J$	
process $A \rightarrow B$	-188	-188	0	\checkmark
process $B \rightarrow C$	+235	$(+) 67$	$(+) 168$	\checkmark
process $C \rightarrow A$	0	+168	-168	\checkmark
whole cycle	+47	+47	0	\checkmark

Any horiz line correct up to max 3
Give $C E$ in $B \rightarrow C$ if ans to ii used for W
If no sign take as +ve
(c) $\eta_{\text {oveall }}=47 / 235=0.20$ or 20%
(d) Isothermal process would require engine to run very slowly / be made of material of high heat conductivity
Adiabatic process has to occur very rapidly / require perfectly insulating container/has no heat transfer
Very difficult to meet both requirements in the same device
Very difficult to arrange for heating to stop exactly in the right place (C) so that at end of expansion the curve meets the isothermal at A

Do not credit bald statement to effect
adiabatic / isothermal process not possible - must give reason
Ignore mention of valves opening / closing, rounded corners, friction, induction / exhaust strokes
wte

M3. (a) (i) Indicated work per cylinder = area of loop \checkmark [either stated explicitly or shown on the Figure e.g. by shading or ticking squares or subsequent correct working.]
appropriate method for finding area e.g. counting squares correct scaling factor used [to give answer of $470 \mathrm{~J} \pm 50 \mathrm{~J}]$
indicated power $=4 \times 0.5 \times(4100 / 60) \times 470$

$$
=64 \mathrm{~kW} \checkmark
$$

(ii) (Fuel flow rate $=0.376 / 100=0.00376$ litre $^{-1}$)

Input power (= c.v. \times fuel flow rate)
$=38.6 \times 10^{6} \times 0.00376$
(= 145 kW)
$\eta_{\text {ovean }}=$ brake power/input power $\quad \checkmark$ seen or implied from correct subsequent working
$=55.0 / 145=0.38$ or 38%
(b) Power expended in overcoming friction in (all) the bearings / between piston \& cylinder and / or in circulating oil / cooling water and / or driving auxiliaries (e.g. fuel injection pump)
(c) Represents the induction and exhaust (strokes) (which take place at nearly atmospheric pressure).

M4. (a) (i) work done (per kg) = area enclosed (by loop) (1) suitable method of finding area (e.g. counting squares) (1)

Page 6
correct scaling factor (1) (to give answer $\approx 500 \mathrm{~kJ}$)
(ii) $\quad P$ (= work done per $\mathrm{kg} x$ fuel flow rate)
$=500(\mathrm{~kJ}) \times 9.9\left(\mathrm{kgs}^{1}\right)=5000 \mathrm{~kW}(1)$
(4950kW)
(iii) (output power = indicated power - friction power)
$P_{\text {out }}=4950-430=45(20) \mathrm{kW}$ (1)
(use of $P=5000$ gives $P_{\text {out }}=45(70) \mathrm{kW}$)
(allow C.E. for values of P in (ii))
(b) (i) $\quad P_{\text {in }}(=$ fuel flow rate \times calorific value) $=0.30 \times 44 \times 10^{6}=13(.2) \times 10^{6} \mathrm{~W}$ (1)
efficiency $=\frac{4520 \times 10^{3}}{13.2 \times 10^{6}}=34 \%$ (1)
(allow C.E. for value of $P_{\text {out }}$ in (a) (iii) and $P_{\text {in }}$ in (b) (i))

M5. (a) $\quad T_{H}=273+820=1093(K), T_{C}=273+77=350(K)(1)$
efficiency $=\frac{T_{H}-T_{C}}{T_{H}}=\frac{1093-350}{1093}=0.68$ or 68% (1)
(b) rotational speed of output shaft $=\frac{1800}{2 \times 60}=15 \mathrm{rev} \mathrm{s}^{-1}$ (1)
(work output each cycle $=380 \mathrm{~J}, 2$ rev $\equiv 1$ cycle in a 4 stroke engine)
indicated power $=15 \times 190=5.7 \mathrm{~kW}(1)$
(c) power lost (= indicated power -actual power) $=5.7-4.7=1.0 \mathrm{~kW}$ (1) (allow C.E. for incorrect value from (b))
(d) energy supplied per sec (= fuel flow rate x calorific value)

$$
=\frac{2.1 \times 10^{-2}}{60} \times 45 \times 10^{6}=16 \mathrm{~kW}(15.8 \mathrm{~kW})(1)
$$

1
(e) efficiency $=\frac{\text { net power output }}{\text { power input }}=\frac{4.7}{16}=0.29$ or 29%
$\frac{4.7}{15.8}=0.30$ or 30%
(allow C.E. for value from (d))
1
[7]

